Skip to main content

3 Myths About Observability — And Why They’re Holding Back Your Teams

The past few years have seen intense interest in observability tools, which collect data about the performance of systems and applications to help companies identify and address performance issues and outages. The category seems to be nearing the top of its hype cycle, as seen in Cisco’s recent $28 billion cash offer to acquire Splunk.

The concept of observability is a valuable one, but the way the term has been used is misleading and leaves some teams worse off because of limitations in what observability tools actually provide. Enterprises need to rethink what observability means and regard it as a practice rather than a catch-all product category that can serve every team member’s needs equally. 

There are several teams that can benefit from observability, and they each have needs specific to their roles and responsibilities. For example, key constituents include:

  • SRE and infrastructure specialists
  • Data engineers
  • Developers
  • Security specialists

What enterprises really need from observability

Each of these teams need actionable information to help them address the specific issues they confront in their roles. Crucially, this information must not just alert them that a problem exists but also provide the specific details and context to help address the problem quickly.

For example, in the context of security, observability tools must help security practitioners to quickly detect and mitigate threats and vulnerabilities. The tools should provide metrics to help explain why incidents occurred and suggest proactive measures to mitigate against threats in future.

For data engineering teams, observability tools should provide visibility across data pipelines and data products. Data practitioners need to know when the source of data in a pipeline changes, for example, and what action they need to take to maintain the integrity of their data applications.

For developers, observability tools need to know not just that an error or a performance issue occurred, but also direct them to the specific coding issue that caused the error. They also need information to help them prioritize errors and know which to address first, delivered in the context of their workflows, not in a separate tool.

Providing teams with actionable detail that’s specific to their roles creates greater ownership and accountability for each practice area, because specialists get the information they need delivered directly to them. In contrast, treating observability as a catch-all product area leads to multiple teams chasing after the latest problem, no matter the source of that issue. Observability has skewed too far towards solving cloud infrastructure challenges, and this approach doesn’t do enough for specialists in other areas.

Here are three myths of observability that have emerged as a result of this wrong-headed thinking:

Myth 1. Observability is a product. We need to stop thinking about observability as a product and start to regard it for what it actually is: a practice. When we view observability as a practice, we quickly realize that each practice area has its own needs that cannot be addressed with a single pane of glass. 

Myth 2. Observability is the same for every persona. Each practice area has its own distinct needs, and that means they need information that addresses their specific roles and objectives, delivered in the context of their usual workflow. What’s useful for an SRE will not be the same as what’s useful for a developer or a security specialist. 

Myth 3. More data solves everything. Data alone is not a silver bullet, and too much data can become a liability when it needs to be securely stored and managed at scale. One financial services firm was recently hit with an observability bill of $65 million, reportedly due to unpredictable spikes in the data collected.

An approach that targets specialists with just the data they need to solve the problem at hand is far more efficient than collecting all logs, metrics and trace data and trying to analyze it after the fact.

Technology specialists in areas like security, data and software development are far more effective — and happier — when they get the information they need to solve problems quickly and take ownership of their work. Observability is an important area, but treating it as a product rather than a practice can lead to higher costs and poorer outcomes for the business.

The post 3 Myths About Observability — And Why They’re Holding Back Your Teams appeared first on SD Times.



from SD Times https://ift.tt/xpzSuE4

Comments

Popular posts from this blog

Difference between Web Designer and Web Developer Neeraj Mishra The Crazy Programmer

Have you ever wondered about the distinctions between web developers’ and web designers’ duties and obligations? You’re not alone! Many people have trouble distinguishing between these two. Although they collaborate to publish new websites on the internet, web developers and web designers play very different roles. To put these job possibilities into perspective, consider the construction of a house. To create a vision for the house, including the visual components, the space planning and layout, the materials, and the overall appearance and sense of the space, you need an architect. That said, to translate an idea into a building, you need construction professionals to take those architectural drawings and put them into practice. Image Source In a similar vein, web development and design work together to create websites. Let’s examine the major responsibilities and distinctions between web developers and web designers. Let’s get going, shall we? What Does a Web Designer Do?...

A guide to data integration tools

CData Software is a leader in data access and connectivity solutions. It specializes in the development of data drivers and data access technologies for real-time access to online or on-premise applications, databases and web APIs. The company is focused on bringing data connectivity capabilities natively into tools organizations already use. It also features ETL/ELT solutions, enterprise connectors, and data visualization. Matillion ’s data transformation software empowers customers to extract data from a wide number of sources, load it into their chosen cloud data warehouse (CDW) and transform that data from its siloed source state, into analytics-ready insights – prepared for advanced analytics, machine learning, and artificial intelligence use cases. Only Matillion is purpose-built for Snowflake, Amazon Redshift, Google BigQuery, and Microsoft Azure, enabling businesses to achieve new levels of simplicity, speed, scale, and savings. Trusted by companies of all sizes to meet...

2022: The year of hybrid work

Remote work was once considered a luxury to many, but in 2020, it became a necessity for a large portion of the workforce, as the scary and unknown COVID-19 virus sickened and even took the lives of so many people around the world.  Some workers were able to thrive in a remote setting, while others felt isolated and struggled to keep up a balance between their work and home lives. Last year saw the availability of life-saving vaccines, so companies were able to start having the conversation about what to do next. Should they keep everyone remote? Should they go back to working in the office full time? Or should they do something in between? Enter hybrid work, which offers a mix of the two. A Fall 2021 study conducted by Google revealed that over 75% of survey respondents expect hybrid work to become a standard practice within their organization within the next three years.  Thus, two years after the world abruptly shifted to widespread adoption of remote work, we are dec...