Skip to main content

Python or R: Which to choose for your next data project

When it comes to picking a language for a new data science project, developers often have to go through the debate of whether Python or R would be the best suited for the task. R is a language specifically designed for data analysis so it has a lot of useful features built in, but Python is a general-purpose language with a lot of data-centric libraries for it that also makes it a suitable choice. 

R had long been the go-to language for data analysis, but in recent years that has begun to change as people began to see the potential in Python as well. 

According to a 2020 survey from recruiting company BurtchWorks, the five year trend of language preference for data science has shown R falling while Python rises. In 2016, 20% of data scientists preferred Python and 43% preferred R, but in 2020, 47% preferred Python and only 29% preferred R. 

RELATED CONTENT: Python named TIOBE’s programming language of 2020

Even though Python is rapidly rising in popularity as a preferred choice, it’s not possible to say one language is definitively better than the other; both languages have their pros and cons. Carefully considering each of those, along with your project’s specific needs, can help make the decision over which language to go with easier. 

“The solution, like any other problem, is largely dependent on the problem’s criteria, and there is no correct response to this issue other than ‘it depends,’” said Eric McGee, senior network engineer at TRG Datacenters. “Both of these languages are extremely powerful, and regardless of which one you invest your time in, there is no wrong answer if you want a long-term career in data science; learning either of these two languages will pay you in the future one way or another, so instead of getting stuck in analysis paralysis, just pick one and get to work. The bulk of data science problems can be solved with any of these languages, and the rest is a matter of technique, team capabilities, and available resources, all of which are mostly independent of the language.”

Python pros

One nice thing about Python is that it’s very easy to use. It’s often recommended as a first language to learn for people wanting to learn programming because of that ease of use. “Python, as a general-purpose programming language, appears to be a better choice if you want to start into programming in general and want something that can be utilized in various fields of software development, such as web development,” said Veronica Miller, cybersecurity expert at VPNoverview

Because it is a general programming language, it might be a better option if you need to create APIs to expose data models or want it to be able to interact with other software, McGee added.

In addition, Python supports a wide range of programming paradigms, including object-oriented programming and procedural programming, according to Miller. 

It also has the advantage of having a number of packages and libraries for data science, such as TensorFlow, Pandas, Keras, NumPy, and PyTorch, Miller explained. 

Its large open source community is another advantage. “Python has a vibrant community to take help from, and because it is open-source, there will always be someone to aid you,” said Miranda Yan, founder of VinPit.  

“Overall, I think Python and R are great for their different strengths,” said Phil Strazzulla, founder and CEO of Select Software. “However, I usually give an edge to Python because of its broader use cases. For example, in hiring developers and working with different software platforms, Python isn’t just great at aggregating and making sense of data. It also works well with other languages and interfaces, making it perfect for developing APIs that share data in different systems.”

R pros

Like Python, R also has a lot of advantages that make it a good choice. It was designed to be used for data analysis, which means it has really advanced capabilities for that built into it. 

“R is specifically related to statistics, with most of the statistical algorithms having their first release in R and it is used in related introductory courses. This makes R a good fit for exploratory data analysis with a very low barrier to go from data, to insights, creating stunning reports, dashboards or APIs,” said Francesco Tisiot, developer advocate at database as a service company Aiven.

Like Python, R also has a large collection of tools and packages to extend its core functionality. It also has a lot of capabilities for building dashboards and visualizations, Miller explained. 

In addition, according to Miller, since R is a procedural language, developers might prefer that they’re able to break large problems into smaller segments to make problem-solving easier. 

Python cons

One negative against Python is that many popular R libraries for statistical analysis aren’t available for it, said Miller. 

According to Yan, another con is that Python can consume a lot of memory.

R Cons

Some of the main disadvantages of R are that it can be difficult to understand, can be slow if not used properly, it doesn’t have sufficient documentation, and it’s slower than Python, according to Miller. 

Yan agreed that R can be difficult to learn and implement. She also added that it lacks robust security features.

The post Python or R: Which to choose for your next data project appeared first on SD Times.



from SD Times https://ift.tt/3vZohcw

Comments

Popular posts from this blog

Difference between Web Designer and Web Developer Neeraj Mishra The Crazy Programmer

Have you ever wondered about the distinctions between web developers’ and web designers’ duties and obligations? You’re not alone! Many people have trouble distinguishing between these two. Although they collaborate to publish new websites on the internet, web developers and web designers play very different roles. To put these job possibilities into perspective, consider the construction of a house. To create a vision for the house, including the visual components, the space planning and layout, the materials, and the overall appearance and sense of the space, you need an architect. That said, to translate an idea into a building, you need construction professionals to take those architectural drawings and put them into practice. Image Source In a similar vein, web development and design work together to create websites. Let’s examine the major responsibilities and distinctions between web developers and web designers. Let’s get going, shall we? What Does a Web Designer Do?

A guide to data integration tools

CData Software is a leader in data access and connectivity solutions. It specializes in the development of data drivers and data access technologies for real-time access to online or on-premise applications, databases and web APIs. The company is focused on bringing data connectivity capabilities natively into tools organizations already use. It also features ETL/ELT solutions, enterprise connectors, and data visualization. Matillion ’s data transformation software empowers customers to extract data from a wide number of sources, load it into their chosen cloud data warehouse (CDW) and transform that data from its siloed source state, into analytics-ready insights – prepared for advanced analytics, machine learning, and artificial intelligence use cases. Only Matillion is purpose-built for Snowflake, Amazon Redshift, Google BigQuery, and Microsoft Azure, enabling businesses to achieve new levels of simplicity, speed, scale, and savings. Trusted by companies of all sizes to meet

2022: The year of hybrid work

Remote work was once considered a luxury to many, but in 2020, it became a necessity for a large portion of the workforce, as the scary and unknown COVID-19 virus sickened and even took the lives of so many people around the world.  Some workers were able to thrive in a remote setting, while others felt isolated and struggled to keep up a balance between their work and home lives. Last year saw the availability of life-saving vaccines, so companies were able to start having the conversation about what to do next. Should they keep everyone remote? Should they go back to working in the office full time? Or should they do something in between? Enter hybrid work, which offers a mix of the two. A Fall 2021 study conducted by Google revealed that over 75% of survey respondents expect hybrid work to become a standard practice within their organization within the next three years.  Thus, two years after the world abruptly shifted to widespread adoption of remote work, we are declaring 20