Skip to main content

Data Lake vs Data Warehouse Neeraj Mishra The Crazy Programmer

Companies everywhere are handling more data than ever and all these terabytes of data need to be stored somewhere. Should you store the data in a database, a data warehouse, or a data lake? How do you know what is best for your company?

Choosing the right data storage solution will depend greatly on how the data is going to be used. While both a data lake and a data warehouse share the goal of the process data queries to facilitate analytics, their functions are different. This post will give you an overview and use cases to understand when to use a data lake or a data warehouse.

What is Data Lake?

A data lake is a repository that holds raw data, of which the purpose is not yet defined or requires a very high level of flexibility and agility. A data lake allows you to store all data, at its raw format, structured and unstructured in a central repository. You can store the data without having to structure it first.

The data lake may not use databases to store the data, using flat files or logs instead.

Data Lake

Image Source

Use Cases

A data lake is a good choice when you need to store a large number of records without knowing if you will need them in the future. Data lakes work great to store historical data and support compliance. One of the most common use cases is storing data coming from IoT sources for near-real-time analysis. Here are some examples:

Healthcare: Data lakes help healthcare organizations to comply with regulations on data storage and privacy. The lake allows them to store patient records and retrieve data for queries years later. These types of services for healthcare companies usually only store and retrieve, without analyzing the data.

Network Security: These types of companies collect raw data through the different endpoint devices, like routers and IoT sensors. The large numbers of data need to be stored somewhere in case someone wants to check an anomaly. Typically, the data is stored in the data lake for a few weeks. If there is no need to analyze it, the system destroys the data.

Pharmaceuticals: These organizations collect raw data when they conduct drug trials. They also report for regulation. In this case, organizations retain the data for a long time to help future research.

Querying a Data Lake

You need to take into account that you are querying raw data coming from disparate sources. This can make the process a bit challenging. To simplify this process, you can query the data lake using an Athena query. Amazon Athena is an interactive query service that allows analyzing data in a data lake in an easier way by using standard SQL.

The ability to handle all types of data makes data lakes very attractive for businesses. Industries from oil and gas, marketing, and smart city initiatives.

What is Data Warehouse?

A data warehouse is a repository of processed and structured data with a defined purpose. Some may define a data warehouse as a collection of databases since it receives data from relational databases and transactional systems.

Typically, a data warehouse stores optimized data. That’s why data warehouses are specifically designed for interactive data analytics.

Data Warehouse

Use Cases

Every industry that uses structured and unstructured data for analytical reporting and business intelligence, can benefit from a data warehouse. Let’s see some examples:

Banking and Finance: Financial institutions use the analytic powers of a data warehouse to identify risks and analyze products. They also can track the performance of accounts and services and interchange rates.

Government: A data warehouse can keep official records (tax, criminal, health policies). It can help government agencies to detect patterns and identify criminal activities, including threat and fraud detection.

Manufacturing: Data warehouses help simplify the supply chain and operations by allowing them to easily retrieve and compare data. For example, comparing sales and performance over regions.

Data Lake vs Data Warehouse

  Data Lake Data Warehouse
Data Structure Raw data Modeled / optimized data
Purpose of Data Flexible Defined
Easy to update Quick to update. Easy to access and change. Updates take more effort. More structured by design makes it more difficult to manipulate.

Wrap Up

While data lakes and data warehouses serve different purposes, some companies may need both. They’ll need to use a data lake to store raw and unstructured information, and a data warehouse to store structured data, analytics, and aggregated reports.

Ultimately, the choice of using one or another will depend on your company’s needs. That being said, the data lake vs data warehouse discussion just started, and choosing the right model (or both) for your company can be critical for growth and efficiency.

The post Data Lake vs Data Warehouse appeared first on The Crazy Programmer.



from The Crazy Programmer https://ift.tt/3o950TH

Comments

Popular posts from this blog

Difference between Web Designer and Web Developer Neeraj Mishra The Crazy Programmer

Have you ever wondered about the distinctions between web developers’ and web designers’ duties and obligations? You’re not alone! Many people have trouble distinguishing between these two. Although they collaborate to publish new websites on the internet, web developers and web designers play very different roles. To put these job possibilities into perspective, consider the construction of a house. To create a vision for the house, including the visual components, the space planning and layout, the materials, and the overall appearance and sense of the space, you need an architect. That said, to translate an idea into a building, you need construction professionals to take those architectural drawings and put them into practice. Image Source In a similar vein, web development and design work together to create websites. Let’s examine the major responsibilities and distinctions between web developers and web designers. Let’s get going, shall we? What Does a Web Designer Do?

A guide to data integration tools

CData Software is a leader in data access and connectivity solutions. It specializes in the development of data drivers and data access technologies for real-time access to online or on-premise applications, databases and web APIs. The company is focused on bringing data connectivity capabilities natively into tools organizations already use. It also features ETL/ELT solutions, enterprise connectors, and data visualization. Matillion ’s data transformation software empowers customers to extract data from a wide number of sources, load it into their chosen cloud data warehouse (CDW) and transform that data from its siloed source state, into analytics-ready insights – prepared for advanced analytics, machine learning, and artificial intelligence use cases. Only Matillion is purpose-built for Snowflake, Amazon Redshift, Google BigQuery, and Microsoft Azure, enabling businesses to achieve new levels of simplicity, speed, scale, and savings. Trusted by companies of all sizes to meet

2022: The year of hybrid work

Remote work was once considered a luxury to many, but in 2020, it became a necessity for a large portion of the workforce, as the scary and unknown COVID-19 virus sickened and even took the lives of so many people around the world.  Some workers were able to thrive in a remote setting, while others felt isolated and struggled to keep up a balance between their work and home lives. Last year saw the availability of life-saving vaccines, so companies were able to start having the conversation about what to do next. Should they keep everyone remote? Should they go back to working in the office full time? Or should they do something in between? Enter hybrid work, which offers a mix of the two. A Fall 2021 study conducted by Google revealed that over 75% of survey respondents expect hybrid work to become a standard practice within their organization within the next three years.  Thus, two years after the world abruptly shifted to widespread adoption of remote work, we are declaring 20