Skip to main content

Kadane’s Algorithm (Maximum Sum Subarray Problem) in Java Vijay Sinha The Crazy Programmer

In this article, we will understand the idea of Kadane’s Algorithm. We discuss this with the help of an example and also discuss a famous interview problem related to it. Then, we will look at the implementation and analyze the complexities of our approach.

Kadane’s Algorithm

This algorithm is useful in solving the famous ‘Maximum Sum Subarray’ problem. The problem states that given an array we need to find the contiguous subarray with maximum sum and print the maximum sum value. So, how does Kadane’s Algorithm help us in this problem?

The basic idea is to find all contiguous segments of an array whose sum will give us the maximum value. Kadane’s algorithm scans the given array from left to right. In the ith step, it computes the subarray with the largest sum ending at i starting for each subarray.

For example, let us consider this array:

For the given array the maximum subarray exists for [ 1 2 3 6] highlighted in the image and the maximum sum is 12.

Algorithm

Now we look at the algorithm to find the maximum sum subarray.

1. We have two variables max_till_here and max_sum and initialize each variable with the first element of our array.

2. The max_till_here will hold the maximum of all elements or the maximum sum of all elements whichever is greater for a subarray. The max_sum will be our result variable which will contain the maximum of all max_till_here values.

3. So, we start iterating from index 1 or the second element of our array and keep doing the above steps. We keep adding the current array element if its sum with max_till_here is greater than the current element otherwise the max_till_here holds the value of the current element. We also update the max_sum variable with the maximum of max_sum and max_till here on each iteration.

Let us understand these steps with the above mentioned example:

Given Array arr : [ -4, 2, -5, 1, 2, 3, 6, -5, 1]

Initialize 
max_till_here = arr[0] or -4
max_sum = arr[0] or -4

For each iteration, we calculate max_till_here and max_sum as
max_till_here = max(arr[i], max_till_here+arr[i])
max_sum = max(max_sum, max_till_here)

We start at i=1, arr[1] = 2
max_till_here = max(2,-4+2) = max(2,-2) = 2
max_sum = max(-4,2) = 2

At i=2, arr[2] = -5
max_till_here = max(-5,2+(-5)) = max(-5,-3) = -3
max_sum = max(2,-3) = 2

At i=3, arr[3] = 1
max_till_here = max(1,-3+1) = max(1,-2) = 1
max_sum = max(2,1) = 2

At i=4, arr[4] = 2
max_till_here = max(2,1+2) = max(1,3) = 3
max_sum = max(2,3) = 3

At i=5, arr[5] = 3
max_till_here = max(3,3+3) = max(3,6) = 6
max_sum = max(3,6) = 6

At i=6, arr[6] = 6
max_till_here = max(6,6+6) = max(6,12) = 12
max_sum = max(6,12) = 12

At i=7, arr[7] = -5
max_till_here = max(-5,12+(-5)) = max(-5,7) = 7
max_sum = max(12,7) = 12

At i=8, arr[8] = 1
max_till_here = max(1,7+1) = max(1,8) = 8
max_sum = max(12,8) = 12

This is the working of the above algorithm for the above mentioned example in the image. You can see the max_sum obtained is 12.

Implementation in Java

Now we look at the implementation of the above discussed example in Java:

public class KadaneMaximumSumSubarray 
{
 
    static int maximumSubArraySum(int arr[])       //declaring method static help us to call method directly
    {
    int n=arr.length;
    int max_till_here = arr[0];                     //Initialize max_till_here and max_sum with 
    int max_sum = arr[0];                           // first element of array.
 
    for (int i = 1; i < n; i++)                     // We start iterating from second element.  
    {
        max_till_here = Math.max(arr[i], max_till_here + arr[i]);
        max_sum = Math.max(max_sum, max_till_here);
    }
    return max_sum;                             // At the end return max_sum which contain maximumSubArraySu
    }
 
    /* Driver Code to test above methods */
    public static void main(String[] args)
    {
    int arr[] = {-4, 2, -5, 1, 2, 3, 6, -5, 1};
    int max_sum = maximumSubArraySum(arr);             // we call the function to get the result 
    
    System.out.println("Maximum Sum of Contiguous Subarray is : "+ max_sum);
    
    }
}

Output:

Maximum Sum of Contiguous Subarray is : 12

Note: The above discussed approach also handles the case when the input array has all elements negative. In that case, the maximum element of array is our output.

Now, let us have a look at the time and space complexities of Kadane’s algorithm implementation in calculating the maximum subarray sum.

Time Complexity: We traverse the whole array only once while performing operations that require constant time so the time complexity is O(n).

Space Complexity: We do not use any auxiliary space so complexity is O(1).

That’s all for the article the algorithm is explained above you can try it out with other examples with the code.

Let us know if you have any queries in the comment section below.

The post Kadane’s Algorithm (Maximum Sum Subarray Problem) in Java appeared first on The Crazy Programmer.



from The Crazy Programmer https://ift.tt/3utRNrq

Comments

Popular posts from this blog

Difference between Web Designer and Web Developer Neeraj Mishra The Crazy Programmer

Have you ever wondered about the distinctions between web developers’ and web designers’ duties and obligations? You’re not alone! Many people have trouble distinguishing between these two. Although they collaborate to publish new websites on the internet, web developers and web designers play very different roles. To put these job possibilities into perspective, consider the construction of a house. To create a vision for the house, including the visual components, the space planning and layout, the materials, and the overall appearance and sense of the space, you need an architect. That said, to translate an idea into a building, you need construction professionals to take those architectural drawings and put them into practice. Image Source In a similar vein, web development and design work together to create websites. Let’s examine the major responsibilities and distinctions between web developers and web designers. Let’s get going, shall we? What Does a Web Designer Do?...

A guide to data integration tools

CData Software is a leader in data access and connectivity solutions. It specializes in the development of data drivers and data access technologies for real-time access to online or on-premise applications, databases and web APIs. The company is focused on bringing data connectivity capabilities natively into tools organizations already use. It also features ETL/ELT solutions, enterprise connectors, and data visualization. Matillion ’s data transformation software empowers customers to extract data from a wide number of sources, load it into their chosen cloud data warehouse (CDW) and transform that data from its siloed source state, into analytics-ready insights – prepared for advanced analytics, machine learning, and artificial intelligence use cases. Only Matillion is purpose-built for Snowflake, Amazon Redshift, Google BigQuery, and Microsoft Azure, enabling businesses to achieve new levels of simplicity, speed, scale, and savings. Trusted by companies of all sizes to meet...

2022: The year of hybrid work

Remote work was once considered a luxury to many, but in 2020, it became a necessity for a large portion of the workforce, as the scary and unknown COVID-19 virus sickened and even took the lives of so many people around the world.  Some workers were able to thrive in a remote setting, while others felt isolated and struggled to keep up a balance between their work and home lives. Last year saw the availability of life-saving vaccines, so companies were able to start having the conversation about what to do next. Should they keep everyone remote? Should they go back to working in the office full time? Or should they do something in between? Enter hybrid work, which offers a mix of the two. A Fall 2021 study conducted by Google revealed that over 75% of survey respondents expect hybrid work to become a standard practice within their organization within the next three years.  Thus, two years after the world abruptly shifted to widespread adoption of remote work, we are dec...