Skip to main content

Google details three common mainframe modernization mistakes

As more organizations embark on mainframe modernization journeys, Google wants to make sure they head down the right path. The company outlined common pitfalls and antipatterns businesses face when migrating or modernizing their workloads. 

“Migrating or modernizing your mainframe workloads is complex and challenging, even under ideal conditions,” Travis Webb, solutions architect at Googe, wrote in a blog post. “If you avoid the antipatterns discussed in this document, you increase the odds of a successful transformation.”

RELATED CONTENT: Mainframe for DevOps puts an end to silos

While these approaches may work for some circumstances, Webb warns against them because “they have a high probability of failure.”

According to Webb, the three most common antipatterns are: 

 

  • Big bang rewrite applications: Rewriting or re-architecting your legacy mainframe code into a more modern language or design patterns can help speed of application development and future-proof solutions, but it’s a capital-intensive and time-consuming endeavor, Webb explained. Risks include budget overruns, unanticipated complexity and staff turnover. “Even for companies that have the tenacity to see through a multi-year transformation effort, the raw cost of a rewrite is often prohibitive. When compared to all other approaches, a big bang rewrite is the costliest way to modernize your mainframe software,” Webb wrote. 
  • Lift-and-shift migration antipatterns: Organizations are often tempted to move an application from one system to another, for instance moving the mainframe into the cloud. This can be a quick way to get away from an on-premise environment, but organizations still remain locked into the mainframe ecosystem and dependent on an emulation layer. “That dependency can result in a new set of technical challenges. Challenges that are often unfamiliar to the teams maintaining the mainframe software. Unfamiliarity can lead to additional reliance on a new, single-vendor cloud ecosystem,” according to Webb. 
  • In-place modernization antipatterns: With this antipattern, instead of rewriting and re-architecting mainframe code, you focus on the quality, maintainability and testability of software — but you still are subjected to the same risks of a big bang approach. “Any approach involving manually updating your mainframe software can have budget and time constraints. These efforts also often suffer from the second-system effect. Performance and correctness issues inevitably arise because rewriting business logic in a new language requires extensive testing before it aligns with the previous functionality,” Webb wrote. 

 

The post Google details three common mainframe modernization mistakes appeared first on SD Times.



from SD Times https://ift.tt/3bK1yJk

Comments

Popular posts from this blog

A guide to data integration tools

CData Software is a leader in data access and connectivity solutions. It specializes in the development of data drivers and data access technologies for real-time access to online or on-premise applications, databases and web APIs. The company is focused on bringing data connectivity capabilities natively into tools organizations already use. It also features ETL/ELT solutions, enterprise connectors, and data visualization. Matillion ’s data transformation software empowers customers to extract data from a wide number of sources, load it into their chosen cloud data warehouse (CDW) and transform that data from its siloed source state, into analytics-ready insights – prepared for advanced analytics, machine learning, and artificial intelligence use cases. Only Matillion is purpose-built for Snowflake, Amazon Redshift, Google BigQuery, and Microsoft Azure, enabling businesses to achieve new levels of simplicity, speed, scale, and savings. Trusted by companies of all sizes to meet...

Olive and NTT DATA Join Forces to Accelerate the Global Development and Deployment of AI Solutions

U.S.A., March 14, 2021 — Olive , the automation company creating the Internet of Healthcare, today announced an alliance with NTT DATA , a global digital business and IT services leader. The collaboration will fast track the creation of new healthcare solutions to transform the health experience for humans — both in the traditional healthcare setting and at home. As a member of Olive’s Deploy, Develop and Distribute Partnership Programs , NTT DATA is leveraging Olive’s open platform to innovate, build and distribute solutions to Olive’s customers, which include some of the country’s largest health providers. Olive and NTT DATA will co-develop new Loops — applications that work on Olive’s platform to provide humans real-time intelligence — and new machine learning and robotic process automation (RPA) models. NTT DATA and Olive will devote an early focus to enabling efficiencies in supply chain and IT, with other disciplines to follow. “This is an exciting period of growth at Olive, so...

2022: The year of hybrid work

Remote work was once considered a luxury to many, but in 2020, it became a necessity for a large portion of the workforce, as the scary and unknown COVID-19 virus sickened and even took the lives of so many people around the world.  Some workers were able to thrive in a remote setting, while others felt isolated and struggled to keep up a balance between their work and home lives. Last year saw the availability of life-saving vaccines, so companies were able to start having the conversation about what to do next. Should they keep everyone remote? Should they go back to working in the office full time? Or should they do something in between? Enter hybrid work, which offers a mix of the two. A Fall 2021 study conducted by Google revealed that over 75% of survey respondents expect hybrid work to become a standard practice within their organization within the next three years.  Thus, two years after the world abruptly shifted to widespread adoption of remote work, we are dec...